2. MACCHINE MOLECOLARI NATURALI
Il movimento: dalle cellule agli organismi viventi
Il movimento è uno degli attributi principali della vita. La Natura ha dotato gli organismi viventi di aggregati supramolecolari molto complessi che lavorano all’interno delle cellule come congegni e dispositivi (per semplicità, li chiameremo macchine) atti a soddisfare i bisogni delle cellule stesse: promuovono reazioni chimiche che trasformano certe molecole in altre necessarie per la vita della cellula, trasportano materiale molecolare, copiano e trasducono il codice genetico nelle proteine, scambiano informazioni con altre cellule, ecc.
Anche tutti i movimenti macroscopici degli organismi viventi, dai batteri alle balene, e le funzioni più nobili dell’uomo, dal parlare al pensare, sono conseguenze di miriadi di azioni e di movimenti a livello molecolare. Si stima che nel corpo umano siano all’opera circa diecimila diverse tipologie di macchine molecolari (Goodsell 2009)1Goodsell, D. S. (2009) The machinery of life, New York: Springer..
L’esistenza delle macchine molecolari naturali è nota da molto tempo, ma solo negli anni più recenti si è iniziato a studiare in dettaglio i meccanismi del loro funzionamento (Schliwa 2003)2Schliwa, M., ed. (2003) Molecular motors, Weinheim: Wiley-VCH.. Si è visto che questi sistemi operano, nella dimensione dei nanometri, mediante movimenti di tipo meccanico, spesso complessi, ma a volte anche semplici, come rotazioni e spostamenti lineari di componenti del sistema supramolecolare. La cosa sorprendente è che in molti casi si tratta di movimenti apparentemente simili a quelli svolti da macchine del mondo macroscopico, anche se negli organismi tutto avviene in seguito ad interazioni di tipo chimico: in particolare mediante legami intermolecolari che si rompono o si formano. La somiglianza formale con i movimenti che avvengono nel mondo delle macchine macroscopiche permette di rappresentare schematicamente in forma grafica i movimenti delle macchine molecolari. In queste rappresentazioni grafiche spesso non è possibile riportare le formule o i modelli delle molecole coinvolte.
Spesso si ricorre, come vedremo, a schemi di vario tipo capaci di far capire le forme delle grandi molecole coinvolte, le loro reciproche interazioni e la funzione che il sistema supramolecolare svolge.
Nella realtà, le nanomacchine naturali hanno forme molto diverse da quelle delle macchine e degli oggetti del mondo macroscopico. Sembrano grossi agglomerati di atomi, ammonticchiati senza alcuna apparente pianificazione.
La grande maggioranza delle macchine molecolari naturali, infatti, è formata da proteine, molecole costituite da catene modulari di amminoacidi (Fig. 9) che tendono ad avvolgersi per dare strutture globulari. Queste catene possono contenere da una dozzina fino a migliaia di amminoacidi, a seconda della funzione che debbono svolgere.